

Noisy Quantum Computing

Patrick Dreher CSC591 / ECE592 – Fall 2019

Outline

- Revisit some of the physics postulates of quantum mechanics and concepts of a Bloch sphere
- Investigate the question as to how a quantum computing system evolves from a given initial state
- Calculate some properties and characteristics of such systems with several examples

Impacts of "Time Evolution" on a System from Perspective of the Postulates of Quantum Mechanics

Postulate 5

5. The operator A corresponding to an observable that yields a measured value " a_n " will correspond to the state of the system as the normalized eigenstate $|a_n|$ >

Postulate 5 Implications for Quantum Computing

- This postulate describes the collapse of the wave packet of probability amplitudes when making a measurement on the system
- A system described by a wave packet $|\Psi>$ and measured by an operator A repeated times will yield a variety of results given by the probabilities $|\langle a_n | \Psi \rangle|^2$
- If many identically prepared systems are measured each described by the state |a> then the expectation value of the outcomes is

$$\langle a \rangle \equiv \sum_{n} a_{n} \operatorname{Prob}(a_{n}) = \langle a | \mathbb{A} | a \rangle$$

Postulate 6

Dynamics - Time Evolution of a Quantum Mechanical System

- The evolution of a closed system that evolves over time is expressed mathematically by a unitary operator that connects the system between time t₁ to time t₂ and that only depends on the times t₁ and t₂
- The time evolution of the state of a closed quantum system is described by the Schrodinger equation

$$i\hbar \frac{d}{dt}|\Psi> = H(t)|\Psi>$$

Postulate 6 Implications for Quantum Computing

- Any type of "program" that would represent a step by step evolution from an initial state on a quantum computer to some final state must preserve the norm of the state (conservation of probability)
- Requirement that each "step-by-step" evolution must preserve unitarity (forces constraints for "programming" a quantum computer)
- The requirement of postulate 6 that the quantum mechanical system be closed for this unitary evolution of the system over time (forces constraints for "programming" a quantum computer)

Evolution of a Quantum System

- Physics postulate 5 describes a the process for obtaining a measurement from a quantum mechanical state
- Postulate 6 describes the time evolution of a quantum mechanical system
- It is known that quantum information is extremely fragile due to interactions between the system and the overall environment in which that system is embedded

Bloch Sphere

• The matrices σ_x , σ_y and σ_z are associated with rotations about the x, y, and z axes $R_n(\theta) \equiv e^{-i\theta n \cdot \frac{\sigma}{2}} = \cos(\frac{\theta}{2})I - i\sin(\frac{\theta}{2})(n_x X + n_y Y + n_z Z)$

 Reversible one qubit gates can be viewed as rotations in this 3 dimensional representation

How Will Qubits Evolve under Unitary Transformations

- How will quantum system evolve in time from the initial state at t=0 to a later time t = T in the presence of the environment in which hit is embedded
- What mathematical relationships and metrics can be defined to describe this process

Evolution of a QM System Described by a Hamiltonian

 Physics postulate 6 describes the quantum mechanical evolution of that system

$$ih\frac{d}{dt}|\Psi\rangle = H(t)|\Psi\rangle$$

- That pure state will co-evolve with the degrees of freedom to which it couples
- Significant degrees of freedom to which it couples are the environment

Hamiltonian for a QM Evolving System

- Define H_s to be the system Hamiltonian, H_E the environment Hamiltonian, and H_{SE} to be the interaction Hamiltonian such that $H_T = H_S + H_E + H_{SE}$
- Assuming that the system environment Hamiltonian is negligible the Hilbert space describing the system and environment are $\mathcal{H}_T = \mathcal{H}_S \otimes \mathcal{H}_F$
- A system evolves by having a unitary operator U act on the initial state $|\Psi>\mapsto U|\Psi>$
- <u>Although the total time evolution of the system and environment can</u> <u>be assumed to be unitary, the question of the evolution restricted to</u> <u>the system state generally is not unitary</u>

Density Matrices

- Introduce a density operator described by a density matrix
- Pure states have very simple density matrices that can be written as

$$\rho_{\Psi} = |\Psi \rangle \langle \Psi|$$

• Assuming that the initial state is described by a pure state

Quantum Errors

- This loss of unitarity during time evolution can be attributed to two basic types of quantum gate errors
 - 1. Coherent errors these are errors that preserve the purity of the input states based on a perturbed unitary operation $(U' \neq U)$ $|\Psi > \mapsto U'|\Psi >$
 - 2. Incoherent errors those that do not preserve the purity of the input state
- Incoherent errors must be represented in terms of density matrices and an evolution operator

$$\rho \mapsto \sum_{j=1}^{n} K_{j} \rho K_{j}^{\dagger}$$

What are these operators K?

The Evolution of a Quantum System Under Unitary Transformations

- The state of a total system can described by a density matrix ρ that evolves from an initial state ρ(0) = ρ_S ⊗ ρ_E
- Label ρ_S as the initial density matrix of the system of interest and ρ_E as the density matrix representing the environment
- The total system is assumed to be closed and evolve with a unitary matrix U(t) as $\rho(t) = U(t)(\rho_S \otimes \rho_E)U(t)^{\dagger}$
- The goal is to extract information on the state of the system of interest at some later time t > 0
- However even under these restricted conditions the resulting evolved state is not a tensor product state in general

イロト イポト イヨト イヨト

Tracking the Evolution of the System

- Assuming that the initial state ρ₀ is a pure state at t = 0 it cannot be assumed that at a time t > 0 pure pure state information can be extracted from the trace of the density matrix ρ(t)
- Nevertheless it is still possible to define the system density matrix $\rho_S(t)$ by taking the Trace over the environment
- $\rho_{S}(t) = Tr_{E}[U(t)(\rho_{S} \otimes \rho_{E})U(t)^{\dagger}]$

Tracking the Evolution of the System (contd)

- Construct a basis for H_T where |e_j > represents the system and |e_a > represents the environment
- The initial density matrices are written as

$$\rho_{S} = \sum_{j} p_{j} |e_{j}\rangle \langle e_{j}| \qquad (1)$$

$$\rho_{E} = \sum_{a} r_{a} |\epsilon_{a}\rangle \langle \epsilon_{a}| \qquad (2)$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Tracking the Evolution of the System (contd)

- Time evolution operator on the basis for H_T is $U(T)|e_j, \epsilon_a >$
- The density matrix can now be written as

$$U(t)(\rho_{S} \otimes \rho_{E})U(t)^{\dagger} = \sum_{j,a} p_{j}r_{a}U(t)|e_{j}, \epsilon_{a} > \langle e_{j}, \epsilon_{a}|U(t)^{\dagger}$$
(3)
$$= \sum_{j,a,k,b,l,c} p_{j}r_{a}U_{kb;ja}|e_{k}, \epsilon_{b} > \langle e_{l}, \epsilon_{c}|U_{lc;ja}^{*}$$
(4)

< □ > < □ > < □ > < □ > < □ > < □ >

Partial Trace

• Calculate the partial Trace over H_E

$$\rho_{S}(t) = Tr_{E}[U(t)(\rho_{S} \otimes \rho_{E})U(t)^{\dagger}]$$

$$= \sum_{j,a,b} p_{j}(\sum_{k} \sqrt{r_{a}}U_{kb;ja}|e_{k} >)(\sum_{l} \sqrt{r_{a}} < e_{l}|U_{kb;ja})$$
(6)

- Assume the the environment can be initialized in a pure state $\rho_E = |\epsilon_0><\epsilon_0|$
- From this assumption $\rho_S(t)$ can be expressed in closed form

$$\rho_{S}(t) \operatorname{Tr}_{E}[U(t)(\rho_{S} \otimes |\epsilon_{0}\rangle < \epsilon_{0}|)U(t)^{\dagger}]$$

$$= \sum_{a} (\mathcal{I} \otimes (\epsilon_{a}|)U(t)(\rho_{S} \otimes |\epsilon_{0}\rangle < \epsilon_{0}|)U(t)^{\dagger}(\mathcal{I} \otimes |\epsilon_{a}))$$

$$= \sum_{a} (\mathcal{I} \otimes (\epsilon_{a}|)U(t)(\mathcal{I} \otimes |\epsilon_{0}\rangle)\rho_{S}(\mathcal{I} \otimes < \epsilon_{0}|)U(t)^{\dagger}(\mathcal{I} \otimes |\epsilon_{a}\rangle)$$

$$= \sum_{a} (\mathcal{I} \otimes (\epsilon_{a}|)U(t)(\mathcal{I} \otimes |\epsilon_{0}\rangle)\rho_{S}(\mathcal{I} \otimes < \epsilon_{0}|)U(t)^{\dagger}(\mathcal{I} \otimes |\epsilon_{a}\rangle)$$

$$= \sum_{a} (\mathcal{I} \otimes (\epsilon_{a}|)U(t)(\mathcal{I} \otimes |\epsilon_{0}\rangle)\rho_{S}(\mathcal{I} \otimes < \epsilon_{0}|)U(t)^{\dagger}(\mathcal{I} \otimes |\epsilon_{a}\rangle)$$

$$= \sum_{a} (\mathcal{I} \otimes (\epsilon_{a}|)U(t)(\mathcal{I} \otimes |\epsilon_{0}\rangle)\rho_{S}(\mathcal{I} \otimes < \epsilon_{0}|)U(t)^{\dagger}(\mathcal{I} \otimes |\epsilon_{a}\rangle)$$

$$= \sum_{a} (\mathcal{I} \otimes (\epsilon_{a}|)U(t)(\mathcal{I} \otimes |\epsilon_{0}\rangle)\rho_{S}(\mathcal{I} \otimes < \epsilon_{0}|)U(t)^{\dagger}(\mathcal{I} \otimes |\epsilon_{a}\rangle)$$

$$= \sum_{a} (\mathcal{I} \otimes (\epsilon_{a}|)U(t)(\mathcal{I} \otimes |\epsilon_{0}\rangle)\rho_{S}(\mathcal{I} \otimes < \epsilon_{0}|)U(t)^{\dagger}(\mathcal{I} \otimes |\epsilon_{a}\rangle)$$

$$= \sum_{a} (\mathcal{I} \otimes (\epsilon_{a}|)U(t)(\mathcal{I} \otimes |\epsilon_{0}\rangle)\rho_{S}(\mathcal{I} \otimes < \epsilon_{0}|)U(t)^{\dagger}(\mathcal{I} \otimes |\epsilon_{a}\rangle)$$

Patrick Dreher (NCSU)

6/1

Kraus Operators

- Define a Kraus operator $E_a(t): H_S \to H_S$ and the operator-sum representation of a quantum operator \mathcal{E}
- It should be noted that because we are working with a closed system the completeness and trace-preserving properties are satisfied $(1 = Tr_S \rho_S(t) = Tr_S(\sum_a E_a^{\dagger} E_a \rho_S))$

$$E_{a}(t) = \langle \epsilon_{a} | U(t) | \epsilon_{0} \rangle$$

$$\mathcal{E} = \rho_{S}(t) \sum_{a} E_{a}(t) \rho_{S} E_{a}(t)^{\dagger}$$
(10)
(11)

This E_a term corresponds to what was earlier written as K_j

イロト 不得下 イヨト イヨト 二日

Generalization of the Unitary Operator U

- Based on the statement of Postulate 6 we have considered time evolution unitary operators that act on a system
- There is a generalization to this idea of a unitary transformation that is not constrained to only time dependent evolution
- Let U be any type of operation that can be expressed as a *black box* unitary operator

Generalization of the Unitary Operator U - CNOT Example

- Consider the general example of a CNOT gate where the control bit is defined as the system of interest and the target bit is the environment
- Using the operator sum representation can write each term E_a

$$E_0 = P_0 = (\mathcal{I} \otimes < 0|) U_{CNOT} (\mathcal{I} \otimes |0>)$$
(12)

$$E_1 = P_1 = (\mathcal{I} \otimes < 1|) U_{CNOT} (\mathcal{I} \otimes |0>$$
(13)

$$\begin{aligned} \mathcal{E} &= P_0 \rho_S P_0 + P_1 \rho_S P_1 = \rho_{00} P_0 + \rho_{11} P_1 = \begin{pmatrix} \rho_{00} & 0 \\ 0 & \rho_{11} \end{pmatrix} \\ \text{where} \rho_S &= \begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix} \end{aligned}$$

Comments and Observations

- Quantum operations do not necessarily map density matrices to density matrices associated with the same state space
- Tracing out the extra degrees of freedom makes it impossible to invert a quantum operation
- Essentially this means that if a system starts in an initial configuration described by a density matrix ρ_S there are infinitely many unitarty operators U that will yield the same $\mathcal{E}(\rho_S)$
- Mathematically the set of operations is no longer a group

< 日 > < 同 > < 回 > < 回 > < 回 > <

Examples of Quantum Computing Processes That Display Decoherence

- Bit-Flip
- Phase Flip
- Depolarization
- Amplitude-Damping

3

(4) (日本)

Input Qubit State Represented on a Bloch Sphere*

*Figure from Quantum Computing Nakahara and Ohmi

Bit-Flip Channel

• Defined by a quantum operation

•
$$\mathcal{E}(\rho_s) = (1-p)\rho_s + p\sigma_x\rho_s\sigma_x$$
, $0 \le p \le 1$

- the input ρs is bit-flipped $|0 > \rightarrow |1 >$ and $|1 > \rightarrow |0 >$ with a probability "p" while it remains in its input state with a probability "(1-p)"
- Can read off the Kraus operators from $\mathcal{E}(
 ho_s)$ as

$$E_0 = \sqrt{1 - \rho} I \tag{14}$$
$$E_1 = \sqrt{\rho} \sigma_x \tag{15}$$

イロト 不得 トイラト イラト 二日

Impacts of This Transformation on ρ_S

• Parameterize ρ_S using Bloch vector and put into expression for $\mathcal{E}(\rho_S)$

$$\rho_{5} = \frac{1}{2} \left(\mathcal{I} + \sum_{k=x,y,z} c_{k} \sigma_{k} \right)$$
(18)

$$E(\rho_{S}) = (1-p)\rho_{S} + p\sigma_{x}\rho_{S}\sigma_{x}$$
(19)
= $\frac{1-p}{2}(\mathcal{I} + c_{x}\sigma x + c_{y}\sigma y + c_{z}\sigma z) + \frac{p}{2}(\mathcal{I} + c_{x}\sigma x - c_{y}\sigma y - c_{z}\sigma z)$ (20)
= $\frac{1}{2}\begin{pmatrix} 1 + (1-2p)c_{x} & c_{x} - i(1-2p)c_{y} \\ c_{x} + i(1-2p)c_{y} & 1 - (1-2p)c_{z} \end{pmatrix}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Impact of These Transformation on the Bit-Flip Channel

- The above equation produced a mixture of Bloch vector states $(c_x c_y c_z)$ and $(c_x c_y c_z)$ with weights (1-p) and p
- Radius of the Bloch sphere is reduced along the y and z axes so that the radius in these directions becomes |1 - 2p|

Remarks on the Impact of These Transformation on the Bit-Flip Channel

- The above equation produced a mixture of Bloch vector states $(c_x c_y c_z)$ and $(c_x c_y c_z)$ with weights (1-p) and p
- Radius of the Bloch sphere is reduced along the y and z axes so that the radius in these directions becomes |1 - 2p|

Circuit Model for a Bit-Flip Channel

- This circuit is an inverted CNOT gate $V = \mathcal{I} \otimes |0> < 0| + \sigma_x \otimes |1> < 1|$
- The output of this circuit is

$$V(\rho_{S} \otimes [(1-p)|0><0|+p|1><1|])V^{\dagger}$$
(16)

$$= (1-p)\rho_{\mathcal{S}} \otimes |0\rangle < 0| + p\sigma_{x}\rho_{\mathcal{S}}\sigma_{x}|1\rangle < 1|$$
(17)

• From the above equation can read off the Kraus operators after tracing over the environmental Hilbert space

•
$$\mathcal{E}(\rho_S) = (1 - p)\rho_S + p\sigma_x\rho_S\sigma_x$$

Circuit Model for a Bit Flip Channel

Design a quantum circuit that models this channel – inverted CNOT gate

Bit-Flip Channel Bloch Sphere* Contracted Along the y and z Axes

*Figure from Quantum Computing Nakahara and Ohmi

NC STATEUNIVERSITY

Phase-Flip Channel

Defined by a quantum operation

•
$$\mathcal{E}(\rho_s) = (1-p)\rho_s + p\sigma_z\rho_s\sigma_z$$
, $0 \le p \le 1$

• the input ρ_5 is phase-flipped $|0 > \rightarrow |0 >$ and $|1 > \rightarrow -|1 >$ with a probability "p" while it remains in its input state with a probability "(1-p)"

Kraus operators are

$$E_0 = \sqrt{1 - p} \mathcal{I}$$
(21)
$$E_1 = \sqrt{p} \sigma_x$$
(22)

イロト 不得 トイラト イラト 一日

Phase-Flip Channel

• Parameterize ρ_S using Bloch vector and put into expression for $\mathcal{E}(\rho_S)$

$$\rho_{5} = \frac{1}{2} \left(\mathcal{I} + \sum_{k=x,y,z} c_{k} \sigma_{k} \right)$$
(25)

$$E(\rho_{S}) = (1 - p)\rho_{S} + p\sigma_{z}\rho_{S}\sigma_{z}$$
(26)
= $\frac{1 - p}{2}(\mathcal{I} + c_{x}\sigma x + c_{y}\sigma y + c_{z}\sigma z) + \frac{p}{2}(\mathcal{I} - c_{x}\sigma x - c_{y}\sigma y + c_{z}\sigma z)$ (27)
= $\frac{1}{2}\begin{pmatrix} 1 + c_{z} & (1 - 2p)(-c_{x} - ic_{y}) \\ (1 - 2p)(c_{x} + ic_{y}) & 1 - c_{z} \end{pmatrix}$

Patrick Dreher (NCSU)

October 29, 2019 18 / 1

Remarks About the Phase-Flip Channel

- Note that the off diagonal elements of this 2x2 matrix decay while the diagonal components do not
- Produced mixture of Bloch vector states (c_x, c_y, c_z) and $(-c_x, -c_y, c_z)$ with weights (1 p) and p
- Initial state has phase $\phi = tan^{-1}\frac{c_y}{c_x}$
- After the quantum operation is applied there is a mixture of ϕ and $\phi+\pi$ states
- This is called a phase relaxation process

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Circuit Model for a Phase-Flip Channel

- This circuit is an inverted-z gate $V = \mathcal{I} \otimes |0> < 0| + \sigma_z \otimes |1> < 1|$
- The output of this circuit is

$$V(\rho_{S} \otimes [(1-p)|0> < 0| + p|1> < 1|])V^{\dagger}$$
(23)

$$= (1 - p)\rho_{\mathcal{S}} \otimes |0\rangle < 0| + p\sigma_{z}\rho_{\mathcal{S}}\sigma_{z}|1\rangle < 1|$$
(24)

• From the above equation can read off the Kraus operators after tracing over the environmental Hilbert space

•
$$\mathcal{E}(\rho_S) = (1 - p)\rho_S + p\sigma_z \rho_S \sigma_z$$

イロト イポト イヨト イヨト

Circuit Model for a Phase Flip Channel

Design a quantum circuit that models this channel – inverted controlled- σ_z gate

Phase-Flip Channel Bloch Sphere* Contracted Along the x and y Axes

*Figure from Quantum Computing Nakahara and Ohmi

NC STATEUNIVERSITY

Amplitude Damping Channel

- \bullet Describes process where qubit decays from |1> to |0> with probability p
- This is a one way decay process where a qubit **ONLY** decays from |1 > to |0 > with a probability p
- This downward decay process is mathematically described by a Kraus operator
- $\mathcal{E}(\rho_s) = E_0 \rho_s E_0^{\dagger} + E_1 \rho_s E_1^{\dagger}$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Amplitude Damping Channel

This process is mathematically represented by a Kraus operator $E_1 = \sqrt{p} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

The Kraus operator for E_0 is fixed by the requirement $\sum_k E_k^{\dagger} E_k$ must be the identity matrix which yields an expression for E_0

$$E_0=egin{pmatrix} 1&0\0&\sqrt{1-
ho} \end{pmatrix}$$

(4 回) (4 回) (4 回)

Effect of Amplitude Damping Channel on Bloch Sphere

$$E(\rho_{S}) = p \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \rho_{S} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-p} \end{pmatrix} \rho_{S} \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}$$
$$= \begin{pmatrix} \rho_{00} + p\rho_{11} & \sqrt{1-p}\rho_{01} \\ \sqrt{1-p}\rho_{01} & \rho_{11} + p\rho_{11} \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 + [p + (1-p)c_{z}] & \sqrt{1-p}(c_{x} - ic_{y}) \\ \sqrt{1-p}(c_{x} - ic_{y}) & 1 - [p + (1-p)c_{z}] \end{pmatrix}$$
Observe

- Observing the components in the 2x2 matrix it can be seen the center of the Bloch sphere is shifted toward the |0 > pole by p
- the radius in the x and y directions are reduced by $\sqrt{1-p}$ and the radius in the z direction by (1-p)

NC STATEUNIVERSITY

Amplitude Damping Channel

1) Bloch Sphere* Shifted Toward the North Pole (|0>) by p

- 2) Bloch Sphere Radius in x and y Reduced $\sqrt{1-p}$
- 3) Bloch Sphere Radius in z Reduced 1-p

*Figure from Quantum Computing Nakahara and Ohmi

Depolarizing Channel

 A depolarizing channel has the property that it maps the input state ρ to a maximally mixed state with probability p and (1-p)

•
$$\mathcal{E}(\rho_s) = (1-p)\rho_s + p\frac{\mathcal{I}}{2}$$

Depolarizing Channel (contd)

• To construct the properties of the depolarizing channel introduce a uniform decomposition equation for the density ρ

•
$$\rho_S = \frac{1}{2} (\mathcal{I} + c_x \sigma_x + c_y \sigma_y + c_z \sigma_z)$$

Writing the in x, y, and z components

$$\sigma_x \rho_S \sigma_x = \frac{1}{2} (\mathcal{I} + c_x \sigma_x - c_y \sigma_y - c_z \sigma_z)$$
(28)

$$\sigma_y \rho_S \sigma_y = \frac{1}{2} (\mathcal{I} - c_x \sigma_x + c_y \sigma_y - c_z \sigma_z)$$
⁽²⁹⁾

$$\sigma_z \rho_S \sigma_z = \frac{1}{2} (\mathcal{I} - c_x \sigma_x - c_y \sigma_y + c_z \sigma_z)$$
(30)

This set of equations can be reduced to

$$2\mathcal{I} = \rho_{S} + \sum_{k=x,y,z} \sigma_{k} \rho_{S} \sigma_{k}$$
(31)

Patrick Dreher (NCSU)

Noisy Quantum Computing

October 29, 2019 24 / 1

イベト イモト イモト

Depolarizing Channel (contd)

Substituting the component equations into $\ensuremath{\mathcal{E}}$ of the depolarizing channel gives

$$E = (1 - \frac{3}{4}\rho)\rho_S + \frac{p}{4}\sum_k \sigma_k \rho_S \sigma_k$$
(32)

The Kraus operators can now be read off as (k runs over the x, y, z)

$$E_0 = \sqrt{\left(1 - \frac{3}{4}p\right)} \mathcal{I}$$
(33)
$$E_1 = \sqrt{\frac{p}{4}} \sigma_k$$
(34)

Circuit Model for the Depolarizing Channel

• There are 4 Kraus operators which suggests constructing a circuit model of a Fredkin gate with the bottom bit in the diagram being the control bit

The input state can be written as

$$\rho_{5} \otimes \frac{\mathcal{I}}{2} \otimes [(1-p)|0><0|+p|1><1|]$$
(35)

Circuit Model for the Depolarizing Channel

The Fredkin gate acting on this input state yields an output

$$\rho = (\mathcal{I}_4 \otimes |0\rangle < 0| + U_{SWAP} \otimes |1\rangle < 1|$$
(36)

$$(\rho_{5} \otimes \frac{\mathcal{I}}{2} \otimes [(1-p)|0> < 0| + p|1> < 1|$$
 (37)

$$(\mathcal{I}_4 \otimes |0> < 0| + U_{SWAP} \otimes |1> < 1|)$$
(38)

$$=(1-p)\rho_{\mathcal{S}}\otimes\frac{\mathcal{I}}{2}\otimes|0><0|+p\frac{\mathcal{I}}{2}\otimes\rho_{\mathcal{S}}\otimes|1><1|$$
(39)

Note that the SWAP gate has the property

$$U_{SWAP}(\rho_1 \otimes \rho_2) U_{SWAP} = (\rho_2 \otimes \rho_1)$$
(40)

Tracing the two qubit environment gives

$$Tr_E \rho = (1-p)\rho_S + p\frac{\mathcal{I}}{2} \tag{41}$$

Patrick Dreher (NCSU)

Noisy Quantum Computing

October 29, 2019 27 / 1

Circuit Model for the Depolarizing Channel

Finally the operator-sum representation for $\mathcal{E}(\rho_S)$ can be written

$$=p\frac{\mathcal{I}}{2}+\frac{1-p}{2}(\mathcal{I}+\sum_{k}c_{k}\sigma_{k}=\frac{\mathcal{I}}{2}+\frac{1-p}{2}\sum_{k}c_{k}\sigma_{k}$$
(42)

Therefore the radius of the Bloch sphere is uniformly reduced from initial size of 1 to (1-p)

Circuit Model for a Depolarizing Channel

Design a quantum circuit that models this channel – inverted Fredkin gate

Depolarizing Channel Bloch Sphere* Radius Uniformly Reduced from $1 \rightarrow 1$ -p

*Figure from Quantum Computing Nakahara and Ohmi

NC STATEUNIVERSITY

IBM Quantum Computing Hardware Specific Information

NC STATEUNIVERSITY

IBM Poughkeepsie

					Single-qubit U3
Qubit	T1 (Âμs)	T2 (Âμs)	Frequency (GHz)	Readout error	error rate
	61.69099895	77.98596962	4.919894473	2.10E-02	2.30E-03
	95.01012635	104.764702	4.831965919	2.10E-02	1.80E-03
	48.85106812	61.58236929	4.940458261	4.00E-02	2.45E-03
	95.6229699	98.51223871	4.514750668	2.80E-02	1.73E-03
	73.45983639	65.99098768	4.66291938	6.80E-02	2.51E-03
	75.73526441	67.08900363	4.957352127	4.40E-02	2.50E-03
	73.40514518	96.30681362	4.995568332	2.30E-02	2.84E-03
	80.906214	29.74878872	4.811620184	4.60E-02	5.35E-03
	76.56943421	103.0319559	5.013724514	4.00E-02	2.38E-03
	70.91546525	96.29800297	5.056303512	3.40E-02	2.88E-03
	78.57285481	17.26940926	4.718488921	7.30E-02	3.34E-03
	92.07955089	90.17527103	4.899894597	3.70E-02	1.64E-03
	60.37137943	14.2144111	4.772844284	2.90E-02	3.10E-03
	60.41609818	20.50080243	5.110855608	6.70E-02	6.29E-03
	65.9439697	77.95659012	4.990058848	3.20E-02	2.78E-03
	90.18591429	50.34112158	4.806136481	7.80E-02	1.43E-03
	96.18676005	68.95233031	4.955688421	3.90E-02	1.58E-03
	74.89376096	20.54441189	4.599276481	6.40E-02	1.41E-03
	92.02319589	101.2713455	4.827979719	2.50E-02	2.42E-03
	79.21638543	80.42325778	4.938660492	4.40E-02	1.68E-03

T_1 – Relaxation Time

- Initialize with qubit in the ground state |0>
- Put the qubit into the |1> state by applying an X-gate
- Wait a specified period of time and then measure in the |0> |1> basis
- Find the relaxation rate by fitting and exponential decay curve to the data

T₂ – Overall Decoherence Time

- Initialize with qubit in the ground state |0>
- Transform the qubit into a superposition state
- Allow the qubit state to evolve over time
- Measure the qubit state (dephasing)

NC STATEUNIVERSITY

Qubit Decoherence

- Measure a loss of quantum information due to interactions with environmental factors
- T₁ is a relaxation time
- T_{ϕ} is a dephasing time
- T₂ is the overall decoherence time

$$\frac{1}{T_2} = \frac{1}{2T_1} + \frac{1}{T_{\phi}}$$

IBM figure from Device Characteristics presentation

Questions