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Noisy Quantum Computing



Outline

• Revisit some of the physics postulates of quantum mechanics and 
concepts of a Bloch sphere

• Investigate the question as to how a quantum computing system evolves 
from a given initial state

• Calculate some properties and characteristics of such systems with several 
examples
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Impacts of “Time Evolution” on a 
System from Perspective of the 

Postulates of Quantum Mechanics



Postulate 5

5. The operator A corresponding to an observable 
that yields a measured value  “an “ will correspond 
to the  state of the system as the normalized 
eigenstate |an >
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Postulate 5 Implications for Quantum Computing 
• This postulate describes the collapse of the wave packet of 

probability amplitudes when making a measurement on the 
system

• A system described by a wave packet |    > and measured by an 
operator A repeated times will yield a variety of results given 
by the probabilities |<an| >|2

• If many identically prepared systems are measured each 
described by the state |a> then the expectation value of the 
outcomes is

< 𝑎𝑎 >≡ ∑𝑛𝑛 𝑎𝑎𝑛𝑛 Pr𝑜𝑜𝑜𝑜(𝑎𝑎𝑛𝑛) =< 𝑎𝑎|A|𝑎𝑎>
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Postulate 6

Dynamics - Time Evolution of a Quantum Mechanical System
• The evolution of a closed system that evolves over time is expressed 

mathematically by a unitary operator that connects the system between 
time t1 to time t2 and that only depends on the times t1 and t2

• The time evolution of the state of a closed quantum system is described 
by the Schrodinger equation
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Postulate 6 Implications for Quantum Computing 

• Any type of “program” that would represent a step by step evolution 
from an initial state on a quantum computer to some final state must 
preserve the norm of the state (conservation of probability)

• Requirement that each “step-by-step” evolution must preserve unitarity
(forces constraints for “programming” a quantum computer)

• The requirement of postulate 6 that the quantum mechanical system be 
closed for this unitary evolution of the system over time (forces 
constraints for “programming” a quantum computer)
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Evolution of a Quantum System
• Physics postulate 5 describes a the process for obtaining a 

measurement from a quantum mechanical state 
• Postulate 6 describes the time evolution of a quantum mechanical 

system
• It is known that quantum information is extremely fragile due to 

interactions between the system and the overall environment in 
which that system is embedded
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Bloch Sphere
• The matrices      𝜎𝜎𝑦𝑦 and are associated with rotations about the x, y, and z 

axes

• Reversible one qubit gates can be viewed as rotations in this 3 dimensional 
representation
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∧
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How Will Qubits Evolve under Unitary Transformations

• How will quantum system evolve in time from the 
initial state at t=0 to a later time t = T in the 
presence of the environment in which hit is 
embedded

• What mathematical relationships and metrics can 
be defined to describe this process
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Evolution of a QM System Described by a Hamiltonian

• Physics postulate 6 describes the quantum mechanical evolution of 
that system 

• That pure state will co-evolve with the degrees of freedom to which 
it couples

• Significant degrees of freedom to which it couples are the 
environment 
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Hamiltonian for a QM Evolving System
• Define HS to be the system Hamiltonian, HE the environment 

Hamiltonian, and HSE to be the interaction Hamiltonian such that 
𝐻𝐻𝑇𝑇 = 𝐻𝐻𝑆𝑆 + 𝐻𝐻𝐸𝐸 + 𝐻𝐻𝑆𝑆𝐸𝐸

• Assuming that the system environment Hamiltonian is negligible the 
Hilbert space describing the system and environment are

ℋ𝑇𝑇 = ℋ𝑆𝑆 ⊗ℋ𝐸𝐸

• A system evolves by having a unitary operator U act on the initial state
Ψ >↦ 𝑈𝑈 Ψ >

• Although the total time evolution of the system and environment can 
be assumed to be unitary, the question of the evolution restricted to 
the system state generally is not unitary 
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Density Matrices
• Introduce a density operator described by a density matrix
• Pure states have very simple density matrices that can be written as 

𝜌𝜌Ψ = |Ψ >< Ψ|
• Assuming that the initial state is described by a pure state
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Quantum Errors
• This loss of unitarity during time evolution can be attributed to two 

basic types of quantum gate errors
1. Coherent errors – these are errors that preserve the purity of the input 

states based on a perturbed unitary operation (𝑈𝑈𝑈 ≠ 𝑈𝑈)
Ψ >↦ 𝑈𝑈𝑈 Ψ >

2. Incoherent errors – those that do not preserve the purity of the input state

• Incoherent errors must be represented in terms of density matrices 
and an evolution operator

𝜌𝜌 ↦�
𝑗𝑗=1

𝑛𝑛

𝐾𝐾𝑗𝑗𝜌𝜌𝐾𝐾𝑗𝑗
†

What are these operators 𝐾𝐾 ?
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NC State University

The Evolution of a Quantum System Under Unitary
Transformations

The state of a total system can described by a density matrix ρ that
evolves from an initial state ρ(0) = ρS ⊗ ρE

Label ρS as the initial density matrix of the system of interest and ρE
as the density matrix representing the environment

The total system is assumed to be closed and evolve with a unitary
matrix U(t) as ρ(t) = U(t)(ρS ⊗ ρE )U(t)†

The goal is to extract information on the state of the system of
interest at some later time t > 0

However even under these restricted conditions the resulting evolved
state is not a tensor product state in general
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Tracking the Evolution of the System

Assuming that the initial state ρ0 is a pure state at t = 0 it cannot be
assumed that at a time t > 0 pure pure state information can be
extracted from the trace of the density matrix ρ(t)

Nevertheless it is still possible to define the system density matrix
ρS(t) by taking the Trace over the environment

ρS(t) = TrE [U(t)(ρS ⊗ ρE )U(t)†]
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Tracking the Evolution of the System (contd́)

Construct a basis for HT where |ej > represents the system and |ǫa >
represents the environment

The initial density matrices are written as

ρS =
∑

j

pj |ej >< ej | (1)

ρE =
∑

a

ra|ǫa >< ǫa| (2)
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Tracking the Evolution of the System (contd́)

Time evolution operator on the basis for HT is U(T )|ej , ǫa >
The density matrix can now be written as

U(t)(ρS ⊗ ρE )U(t)† =
∑

j ,a

pj raU(t)|ej , ǫa >< ej , ǫa|U(t)† (3)

=
∑

j ,a,k,b,l ,c

pj raUkb;ja|ek , ǫb >< el , ǫc |U∗
lc;ja (4)
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Partial Trace

Calculate the partial Trace over HE

ρS(t) =TrE [U(t)(ρS ⊗ ρE )U(t)†] (5)

=
∑

j ,a,b

pj(
∑

k

√
raUkb;ja|ek >)(

∑

l

√
ra < el |Ukb;ja) (6)

Assume the the environment can be initialized in a pure state
ρE = |ǫ0 >< ǫ0|
From this assumption ρS (t) can be expressed in closed form

ρS (t)TrE [U(t)(ρS ⊗ |ǫ0 >< ǫ0|)U(t)†] (7)

=
∑

a

(I ⊗ (ǫa|)U(t)(ρS ⊗ |ǫ0 >< ǫ|0)|U(t)†(I ⊗ |ǫa)) (8)

=
∑

a

(I ⊗ (ǫa|)U(t)(I ⊗ |ǫ0 >)ρS(I⊗ < ǫ0|)U(t)†(I ⊗ |ǫa)) (9)
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Kraus Operators

Define a Kraus operator Ea(t) : HS → HS and the operator-sum
representation of a quantum operator E
It should be noted that because we are working with a closed system
the completeness and trace-preserving properties are satisfied
(1 = TrSρS (t) = TrS(

∑

a E
†
aEaρS)

Ea(t) = < ǫa|U(t)|ǫ0 > (10)

E = ρS(t)
∑

a

Ea(t)ρSEa(t)
† (11)

This Ea term corresponds to what was earlier written as Kj
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Generalization of the Unitary Operator U

Based on the statement of Postulate 6 we have considered time
evolution unitary operators that act on a system

There is a generalization to this idea of a unitary transformation that
is not constrained to only time dependent evolution

Let U be any type of operation that can be expressed as a black box

unitary operator
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Generalization of the Unitary Operator U - CNOT Example

Consider the general example of a CNOT gate where the control bit is
defined as the system of interest and the target bit is the environment

Using the operator sum representation can write each term Ea

E0 = P0 =(I⊗ < 0|)UCNOT (I ⊗ |0 >) (12)

E1 = P1 =(I⊗ < 1|)UCNOT (I ⊗ |0 > (13)

E = P0ρSP0 + P1ρSP1 = ρ00P0 + ρ11P1 =

(

ρ00 0
0 ρ11

)

whereρS =

(

ρ00 ρ01
ρ10 ρ11

)
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Comments and Observations

Quantum operations do not necessarily map density matrices to
density matrices associated with the same state space

Tracing out the extra degrees of freedom makes it impossible to
invert a quantum operation

Essentially this means that if a system starts in an initial
configuration described by a density matrix ρS there are infinitely
many unitarty operators U that will yield the same E(ρS )
Mathematically the set of operations is no longer a group
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Examples of Quantum Computing Processes That Display
Decoherence

Bit-Flip

Phase Flip

Depolarization

Amplitude-Damping
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Input Qubit State Represented on a Bloch Sphere* 
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*Figure from Quantum Computing
Nakahara and Ohmi



NC State University

Bit-Flip Channel

Defined by a quantum operation

E(ρs) = (1− p)ρs + pσxρsσx , 0 ≤ p ≤ 1

the input ρs is bit-flipped |0 >→ |1 > and |1 >→ |0 > with a
probability ”p” while it remains in its input state with a probability
”(1-p)”

Can read off the Kraus operators from E(ρs) as

E0 =
√

1− pI (14)

E1 =
√
pσx (15)
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NC State University

Impacts of This Transformation on ρS

Parameterize ρS using Bloch vector and put into expression for E(ρS )

ρS =
1

2
(I +

∑

k=x ,y ,z

ckσk) (18)

E (ρS ) = (1− p)ρS + pσxρSσx (19)

=
1− p

2
(I + cxσx + cyσy + czσz) +

p

2
(I + cxσx − cyσy − czσz) (20)

= 1
2

(

1 + (1− 2p)cx cx − i(1− 2p)cy
cx + i(1− 2p)cy 1− (1− 2p)cz

)
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NC State University

Impact of These Transformation on the Bit-Flip Channel

The above equation produced a mixture of Bloch vector states
(cxcy cz) and (cx − cy − cz) with weights (1-p) and p

Radius of the Bloch sphere is reduced along the y and z axes so that
the radius in these directions becomes |1− 2p|
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NC State University

Remarks on the Impact of These Transformation on the
Bit-Flip Channel

The above equation produced a mixture of Bloch vector states
(cxcy cz) and (cx − cy − cz) with weights (1-p) and p

Radius of the Bloch sphere is reduced along the y and z axes so that
the radius in these directions becomes |1− 2p|

Patrick Dreher (NCSU) Noisy Quantum Computing October 17, 2019 15 / 1



NC State University

Circuit Model for a Bit-Flip Channel

This circuit is an inverted CNOT gate
V = I ⊗ |0 >< 0|+ σx ⊗ |1 >< 1|
The output of this circuit is

V (ρS ⊗ [(1− p)|0 >< 0|+ p|1 >< 1|])V † (16)

= (1− p)ρS ⊗ |0 >< 0|+ pσxρSσx |1 >< 1| (17)

From the above equation can read off the Kraus operators after
tracing over the environmental Hilbert space

E(ρS) = (1− p)ρS + pσxρSσx
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Circuit Model for a Bit Flip Channel 
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Design a quantum circuit that models this channel – inverted CNOT gate

(1-p)|0><0|+p|1><1|

(1-p)𝜌𝜌𝑆𝑆 ⊗ |0><0| + 
pX 𝜌𝜌𝑆𝑆 X⊗ |1><1|



Bit-Flip Channel 
Bloch Sphere* Contracted Along the y and z Axes
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*Figure from Quantum Computing
Nakahara and Ohmi



NC State University

Phase-Flip Channel

Defined by a quantum operation

E(ρs) = (1− p)ρs + pσzρsσz , 0 ≤ p ≤ 1

the input ρS is phase-flipped |0 >→ |0 > and |1 >→ −|1 > with a
probability ”p” while it remains in its input state with a probability
”(1-p)”

Kraus operators are

E0 =
√

1− pI (21)

E1 =
√
pσx (22)
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NC State University

Phase-Flip Channel

Parameterize ρS using Bloch vector and put into expression for E(ρS )

ρS =
1

2
(I +

∑

k=x ,y ,z

ckσk) (25)

E (ρS ) = (1− p)ρS + pσzρSσz (26)

=
1− p

2
(I + cxσx + cyσy + czσz) +

p

2
(I − cxσx − cyσy + czσz) (27)

= 1
2

(

1 + cz (1− 2p)(−cx − icy )
(1− 2p)(cx + icy ) 1− cz

)
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Remarks About the Phase-Flip Channel

Note that the off diagonal elements of this 2x2 matrix decay while the
diagonal components do not

Produced mixture of Bloch vector states (cx , cy , cz) and
(−cx ,−cy , cz ) with weights (1− p) and p

Initial state has phase φ = tan−1 cy
cx

After the quantum operation is applied there is a mixture of φ and
φ+ π states

This is called a phase relaxation process
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Circuit Model for a Phase-Flip Channel

This circuit is an inverted-z gate V = I ⊗ |0 >< 0|+ σz ⊗ |1 >< 1|
The output of this circuit is

V (ρS ⊗ [(1 − p)|0 >< 0|+ p|1 >< 1|])V † (23)

= (1− p)ρS ⊗ |0 >< 0|+ pσzρSσz |1 >< 1| (24)

From the above equation can read off the Kraus operators after
tracing over the environmental Hilbert space

E(ρS) = (1− p)ρS + pσzρSσz
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Circuit Model for a Phase Flip Channel 
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Design a quantum circuit that models this channel – inverted controlled- 𝜎𝜎𝑧𝑧 gate

(1-p)|0><0|+p|1><1|

(1-p)𝜌𝜌𝑆𝑆 ⊗ |0><0| + 
pZ 𝜌𝜌𝑆𝑆 Z ⊗ |1><1|

𝜌𝜌 𝑆𝑆 Z



Phase-Flip Channel 
Bloch Sphere* Contracted Along the x and y Axes
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Amplitude Damping Channel

Describes process where qubit decays from |1 > to |0 > with
probability p

This is a one way decay process where a qubit ONLY decays from
|1 > to |0 > with a probability p

This downward decay process is mathematically described by a Kraus
operator

E(ρs) = E0ρsE
†
0 + E1ρsE

†
1
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NC State University

Amplitude Damping Channel

This process is mathematically represented by a Kraus operator

E1 =
√
p

(

0 1
0 0

)

The Kraus operator for E0 is fixed by the requirement
∑

k E
†
kEk must be

the identity matrix which yields an expression for E0

E0 =

(

1 0
0

√
1− p

)
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Effect of Amplitude Damping Channel on Bloch Sphere

E (ρS ) = p

(

0 1
0 0

)

ρS

(

0 0
1 0

)

+

(

1 0
0

√
1− p

)

ρS

(

1 0
0

√
1− p

)

=

(

ρ00 + pρ11
√
1− pρ01√

1− pρ01 ρ11 + pρ11

)

= 1
2

(

1 + [p + (1− p)cz ]
√
1− p(cx − icy )√

1− p(cx − icy 1− [p + (1− p)cz ]

)

Observe

Observing the components in the 2x2 matrix it can be seen the center
of the Bloch sphere is shifted toward the |0 > pole by p

the radius in the x and y directions are reduced by
√
1− p and the

radius in the z direction by (1-p)
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Amplitude Damping Channel 
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1) Bloch Sphere* Shifted Toward the North Pole (|0>) by p
2) Bloch Sphere Radius in x and y Reduced 1−p
3) Bloch Sphere Radius in z Reduced 1-p

*Figure from Quantum Computing
Nakahara and Ohmi
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Depolarizing Channel

A depolarizing channel has the property that it maps the input state ρ

to a maximally mixed state with probability p and (1-p)

E(ρs) = (1− p)ρs + p I
2
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Depolarizing Channel (contd́)

To construct the properties of the depolarizing channel introduce a
uniform decomposition equation for the density ρ

ρS = 1
2(I + cxσx + cyσy + czσz)

Writing the in x, y, and z components

σxρSσx =
1

2
(I + cxσx − cyσy − czσz) (28)

σyρSσy =
1

2
(I − cxσx + cyσy − czσz) (29)

σzρSσz =
1

2
(I − cxσx − cyσy + czσz) (30)

This set of equations can be reduced to

2I = ρS +
∑

k=x ,y ,z

σkρSσk (31)
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Depolarizing Channel (contd́)

Substituting the component equations into E of the depolarizing channel
gives

E = (1− 3

4
p)ρS +

p

4

∑

k

σkρSσk (32)

The Kraus operators can now be read off as (k runs over the x, y, z)

E0 =

√

(1− 3

4
p)I (33)

E1 =

√

p

4
σk (34)
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Circuit Model for the Depolarizing Channel

There are 4 Kraus operators which suggests constructing a circuit
model of a Fredkin gate with the bottom bit in the diagram being the
control bit

The input state can be written as

ρS ⊗ I
2
⊗ [(1− p)|0 >< 0|+ p|1 >< 1|] (35)
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Circuit Model for the Depolarizing Channel

The Fredkin gate acting on this input state yields an output

ρ =(I4 ⊗ |0 >< 0|+ USWAP ⊗ |1 >< 1| (36)

(ρS ⊗ I
2
⊗ [(1− p)|0 >< 0|+ p|1 >< 1| (37)

(I4 ⊗ |0 >< 0|+ USWAP ⊗ |1 >< 1|) (38)

=(1− p)ρS ⊗ I
2
⊗ |0 >< 0|+ p

I
2
⊗ ρS ⊗ |1 >< 1| (39)

Note that the SWAP gate has the property

USWAP(ρ1 ⊗ ρ2)USWAP = (ρ2 ⊗ ρ1) (40)

Tracing the two qubit environment gives

TrEρ = (1− p)ρS + p
I
2

(41)
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Circuit Model for the Depolarizing Channel

Finally the operator-sum representation for E(ρS ) can be written

= p
I
2
+

1− p

2
(I +

∑

k

ckσk =
I
2
+

1− p

2

∑

k

ckσk (42)

Therefore the radius of the Bloch sphere is uniformly reduced from initial
size of 1 to (1-p)
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Circuit Model for a Depolarizing Channel 
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X

X𝜌𝜌 𝑆𝑆

𝐼𝐼
2

(1-p)|0><0|+p|1><1|

(1-p)𝜌𝜌⊗ 𝐼𝐼
2
⊗|0><0| 

+ p𝐼𝐼
2
⊗ 𝜌𝜌 ⊗ |1><1|

Design a quantum circuit that models this channel – inverted Fredkin gate



Depolarizing Channel 
Bloch Sphere* Radius Uniformly Reduced from 1  1-p
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*Figure from Quantum Computing
Nakahara and Ohmi



IBM Quantum Computing Hardware 
Specific Information 
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IBM Poughkeepsie 
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Qubit T1 (Âµs) T2 (Âµs) Frequency (GHz) Readout error
Single-qubit U3 

error rate

Q0 61.69099895 77.98596962 4.919894473 2.10E-02 2.30E-03
Q1 95.01012635 104.764702 4.831965919 2.10E-02 1.80E-03
Q2 48.85106812 61.58236929 4.940458261 4.00E-02 2.45E-03
Q3 95.6229699 98.51223871 4.514750668 2.80E-02 1.73E-03
Q4 73.45983639 65.99098768 4.66291938 6.80E-02 2.51E-03
Q5 75.73526441 67.08900363 4.957352127 4.40E-02 2.50E-03
Q6 73.40514518 96.30681362 4.995568332 2.30E-02 2.84E-03
Q7 80.906214 29.74878872 4.811620184 4.60E-02 5.35E-03
Q8 76.56943421 103.0319559 5.013724514 4.00E-02 2.38E-03
Q9 70.91546525 96.29800297 5.056303512 3.40E-02 2.88E-03
Q10 78.57285481 17.26940926 4.718488921 7.30E-02 3.34E-03
Q11 92.07955089 90.17527103 4.899894597 3.70E-02 1.64E-03
Q12 60.37137943 14.2144111 4.772844284 2.90E-02 3.10E-03
Q13 60.41609818 20.50080243 5.110855608 6.70E-02 6.29E-03
Q14 65.9439697 77.95659012 4.990058848 3.20E-02 2.78E-03
Q15 90.18591429 50.34112158 4.806136481 7.80E-02 1.43E-03
Q16 96.18676005 68.95233031 4.955688421 3.90E-02 1.58E-03
Q17 74.89376096 20.54441189 4.599276481 6.40E-02 1.41E-03
Q18 92.02319589 101.2713455 4.827979719 2.50E-02 2.42E-03
Q19 79.21638543 80.42325778 4.938660492 4.40E-02 1.68E-03



T1 – Relaxation Time
• Initialize with qubit in the ground state |0>
• Put the qubit into the |1> state by applying an X-gate
• Wait a specified period of time and then measure in the |0> |1> basis
• Find the relaxation rate by fitting and exponential decay curve to the data
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IBM figure from Device Characteristics presentation 



T2 – Overall Decoherence Time
• Initialize with qubit in the ground state |0>
• Transform the qubit into a superposition state
• Allow the qubit state to evolve over time
• Measure the qubit state (dephasing)
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Qubit Decoherence
• Measure a loss of quantum 

information due to interactions with 
environmental factors

• T1 is a relaxation time
• T𝜙𝜙 is a dephasing time
• T2 is the overall decoherence time

1
𝑇𝑇2

= 1
2𝑇𝑇1

+ 1
𝑇𝑇𝜙𝜙
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IBM figure from Device Characteristics presentation 



Questions
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